Division Algebras Whose pith Powers Have Arbitrary Index
نویسندگان
چکیده
منابع مشابه
Stanley-reisner Ideals Whose Powers Have Finite Length Cohomologies
We introduce a class of Stanley-Reisner ideals called generalized complete intersection, which is characterized by the property that all the residue class rings of powers of the ideal have FLC. We also give a combinatorial characterization of such ideals.
متن کاملSome Groups Whose Reduced C {algebras Have Stable Rank One
It is proved that, for the following classes of groups, ?, the reduced group C-algebra C (?) has stable rank 1: (i) hyperbolic groups which are either torsion{free and non{elementary or which are cocom-pact lattices in a real, noncompact, simple, connected Lie group of real rank 1 having trivial center; (ii) amalgamated free products of groups, ? = G 1 H G 2 , where H is nite and there is g 0 2...
متن کاملINITIAL RAMIFICATION INDEX OF NONINVARIANT VALUATIONS ON FINITE DIMENSIONAL DIVISION ALGEBRAS
Let D be a division ring with centre K and dim, D< ? a valuation on K and v a noninvariant extension of ? to D. We define the initial ramfication index of v over ?, ?(v/ ?) .Let A be a valuation ring of o with maximal ideal m, and v , v ,…, v noninvariant extensions of w to D with valuation rings A , A ,…, A . If B= A , it is shown that the following conditions are equivalent: (i) B i...
متن کاملElements in finite classical groups whose powers have large 1-Eigenspaces
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion de documents scientifiques de niveau r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1125